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Abstract

Genetic algorithms (GAs) are stochastic search algorithms inspired by the basic prin-
ciples of biological evolution and natural selection. GAs simulate the evolution of living
organisms, where the fittest individuals dominate over the weaker ones, by mimicking the
biological mechanisms of evolution, such as selection, crossover and mutation. GAs have
been successfully applied to solve optimization problems, both for continuous (whether
differentiable or not) and discrete functions.

This paper describes the R package GA, a collection of general purpose functions that
provide a flexible set of tools for applying a wide range of genetic algorithm methods.
Several examples are discussed, ranging from mathematical functions in one and two
dimensions known to be hard to optimize with standard derivative-based methods, to
some selected statistical problems which require the optimization of user defined objective
functions. (This paper contains animations that can be viewed using the Adobe Acrobat
PDF viewer.)
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1. Introduction

Genetic algorithms (GAs) are a class of evolutionary algorithms made popular by John Hol-
land and his colleagues during the 1970s (Holland 1975), and which have been applied to
find exact or approximate solutions to optimization and search problems (Goldberg 1989;
Sivanandam and Deepa 2007). Compared with other evolutionary algorithms, the distin-
guishing features in the original proposal were: (i) bit strings representation; (ii) proportional
selection; and (iii) crossover as the main genetic operator. Since then, several other repre-
sentations have been formulated in addition to binary strings. Further methods have been
proposed for crossover, while mutation has been introduced as a fundamental genetic opera-
tor. Therefore, nowadays GAs belong to the larger family of evolutionary algorithms (EAs),
and the two terms are often used interchangeably.
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Following Spall (2004) the problem of maximizing a scalar-valued objective function f : § — R
can be formally represented as finding the set

O =argmax f(0) ={0" € O : f(0") > f(A), VOc O}, (1)
0O

where ©® C §. The set § C RP defines the search space, i.e., the domain of the parameters
0 = (61, ...,0p) where each 0; varies between the corresponding lower and upper bounds. The
set O indicates the feasible search space, which may be defined as the intersection of S and
a set of m > 0 additional constraints:

g;(0) <0 forj=1,...,q, hij(0) =0 forj=gq+1,...,m.

The solution set ©* in (1) may be a unique point, a countable (finite or infinite) collection of
points, or a set containing an uncountable number of points.

While the formal problem representation in (1) refers to maximization of an objective function,
minimizing a loss function can be trivially converted to a maximization problem by changing
the sign of the objective function.

Typically, for differentiable continuous functions f the optimization problem is solved by
root-finding, i.e., by looking for 6* such that 0f(0*)/060; = 0 for every i =1,...,p. However,
care is needed because such a root may not correspond to a global optimum of the objective
function. Different techniques are required if we constrain 6 to lie in a connected subset of RP
(constrained optimisation) or if we constrain € to lie in a discrete set (discrete optimisation).
In the latter case, also known as combinatorial optimization, the set of feasible solutions is
discrete or can be reduced to discrete.

R (R Core Team 2012) includes some built-in optimization algorithms. The function optim
provides implementations of three deterministic methods: the Nelder-Mead algorithm, a
quasi-Newton algorithm (also called a variable metric algorithm), and the conjugate gradient
method. Box-constrained optimization is also available. A stochastic search is provided by
optim using simulated annealing. The function nlm performs minimization of a given function
using a Newton-type algorithm. The golden section search for one dimensional continuous
functions is available through the optimize function. Many other packages deal with different
aspects of function optimization. A comprehensive listing of available packages is contained
in the CRAN task view on “Optimization and Mathematical Programming” (Theussl 2013).

Packages gafit (Tendys 2002), galts (Satman 2012a) and mcga (Satman 2012b) offer some
limited options for using optimization routines based on genetic algorithms. The package
rgenoud (Mebane Jr. and Sekhon 2011) combines evolutionary algorithm methods with a
derivative-based (quasi-Newton) method to solve optimization problems. genalg (Willighagen
2005) attempts to provide a genetic algorithm framework for both binary and floating points
problems, but it is limited in scope and flexibility. DEoptim (Mullen, Ardia, Gil, Windover,
and Cline 2011) implements the differential evolution algorithm for global optimization of a
real-valued function.

The aim in writing the GA package was to provide a flexible, general-purpose R package for
implementing genetic algorithms search in both the continuous and discrete case, whether
constrained or not. Users can easily define their own objective function depending on the
problem at hand. Several genetic operators are available and can be combined to explore
the best settings for the current task. Furthermore, users can define new genetic operators
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and easily evaluate their performances. The package is available from the Comprehensive R
Archive Network (CRAN) at http://CRAN.R-project.org/package=GA.

In the next section, we briefly review the basic ideas behind GAs. Then, we present the GA
package in Section 3, followed by several examples on its usage in Section 4. Such examples
range from mathematical functions in one and two dimensions known to be hard to optimize
with standard derivative-based methods, to some selected statistical problems which require
the optimization of user defined objective functions.

2. Genetic algorithms

Genetic algorithms are stochastic search algorithms which are able to solve optimization
problems of the type described in Equation 1, both for continuous (whether differentiable
or not) and discrete functions (Affenzeller and Winkler 2009; Back, Fogel, and Michalewicz
2000a,b; Coley 1999; Eiben and Smith 2003; Haupt and Haupt 2004; Spall 2003). Constraints
on the parameters space can also be included (Yu and Gen 2010).

GAs use evolutionary strategies inspired by the basic principles of biological evolution. At
a certain stage of evolution a population is composed of a number of individuals, also called
strings or chromosomes. These are made of units (genes, features, characters) which control
the inheritance of one or several characters. Genes of certain characters are located along
the chromosome, and the corresponding string positions are called loci. Each genotype would
represent a potential solution to a problem.

The decision variables, or phenotypes, in a GA are obtained by applying some mapping from
the chromosome representation into the decision variable space, which represent potential
solutions to an optimization problem. A suitable decoding function may be required for
mapping chromosomes onto phenotypes.

The fitness of each individual is evaluated and only the fittest individuals reproduce, passing
their genetic information to their offspring. Thus, with the selection operator, GAs mimic
the behavior of natural organisms in a competitive environment, in which only the most
qualified and their offspring survive. Two important issues in the evolution process of GAs
search are exploration and exploitation. Exploration is the creation of population diversity
by exploring the search space, and is obtained by genetic operators, such as mutation and
crossover. Crossover forms new offsprings from two parent chromosomes by combining part
of the genetic information from each. On the contrary, mutation is a genetic operator that
randomly alters the values of genes in a parent chromosome. Exploitation aims at reducing
the diversity in the population by selecting at each stage the individuals with higher fitness.
Often an elitist strategy is also employed, by allowing the best fitted individuals to persist in
the next generation in case they did not survive.

The evolution process is terminated on the basis of some convergence criteria. Usually a
maximum number of generations is defined. Alternatively, a GA is stopped when a sufficiently
large number of generations have passed without any improvement in the best fitness value,
or when a population statistic achieves a pre-defined bound.

Figure 1 shows the flow-chart of a typical genetic algorithm. A user must first define the type
of variables and their encoding for the problem at hand. Then the fitness function is defined,
which is often simply the objective function to be optimized. More generally, it can be any
function which assigns a value of relative merit to an individual. Genetic operators, such as
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Figure 1: Flow-chart of a genetic algorithm.

crossover and mutation, are applied stochastically at each step of the evolution process, so
their probabilities of occurrence must be set. Finally, convergence criteria must be supplied.

The evolution process starts with the generation of an initial random population of size n, so
for step k = 0 we may write {«950), 950), e 9%0)}. The fitness of each member of the population

at any step k, f (ng)), is computed and probabilities pz(-k) are assigned to each individual in
the population, usually proportional to their fitness. The reproducing population is formed
(selection) by drawing with replacement a sample where each individual has probability of
surviving equal to pgk) A new population {0§k+1),9§k+1),...,0,(Lk+1)} is formed from the
reproducing population using crossover and mutation operators. Then, set k = k + 1 and
the algorithm returns to the fitness evaluation step. When convergence criteria are met the

evolution stops, and the algorithm deliver 6* = arg max ) f (ng)) as the optimum.
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3. Overview of the GA package

The GA package implements genetic algorithms using S4 object-oriented programming (OOP).
For an introduction to OOP in the S language see Venables and Ripley (2000), while for a
more thorough treatment of the subject specifically for R see Chambers (2008) and Gentleman
(2009). The proponents of OOP argue that it allows for easier design, writing and maintaining
of software code. However, the actual internal implementation should be transparent to the
end user, and in the following we describe the use of the package from a user perspective.

The main function in the package is called ga, which has the following arguments:

ga(type = c("binary", "real-valued", "permutation"),
fitness, ...,
min, max, nBits,
population = gaControl(type)@population,
selection = gaControl(type)@selection,
crossover = gaControl(type)@crossover,
mutation = gaControl(type)@mutation,
popSize = 50, pcrossover = 0.8, pmutation = 0.1,
elitism = max(1l, round(popSize * 0.05)),
monitor = gaMonitor, maxiter = 100, run = maxiter,
maxfitness = -Inf, names = NULL, suggestions, seed)

The available arguments are:

type The type of genetic algorithm to be run depending on the nature of decision vari-
ables. Possible values are: "binary" for binary representations of decision variables;
"real-valued" for optimization problems where the decision variables are floating-point
representations of real numbers; "permutation" for problems that involves reordering
of a list.

fitness The fitness function, any allowable R function which takes as input an individual
string representing a potential solution, and returns a numerical value describing its
“fitness”.

... Additional arguments to be passed to the fitness function. This allows one to write fitness
functions that keep some variables fixed during the search.

min A vector of length equal to the decision variables providing the minimum of the search
space in case of real-valued or permutation encoded optimizations.

max A vector of length equal to the decision variables providing the maximum of the search
space in case of real-valued or permutation encoded optimizations.

nBits A value specifying the number of bits to be used in binary encoded optimizations.
population The string name or an R function for randomly generating an initial population.

selection The string name or an R function performing selection, i.e., a function which
generates a new population of individuals from the current population probabilistically
according to individual fitness.
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crossover The string name or an R function performing crossover, i.e., a function which
forms offsprings by combining part of the genetic information from their parents.

mutation The string name or an R function performing mutation, i.e., a function which
randomly alters the values of some genes in a parent chromosome.

popSize The population size.

pcrossover The probability of crossover between pairs of chromosomes. Typically this is a
large value and by default is set to 0.8.

pmutation The probability of mutation in a parent chromosome. Usually mutation occurs
with a small probability, and by default is set to 0.1.

elitism The number of best fitness individuals to survive at each generation. By default the
top 5% individuals will survive at each iteration.

monitor An R function which takes as input the current state of the ga object and show
the evolution of the search. By default, the function gaMonitor prints the average and
best fitness values at each iteration. If set to plot these information are plotted on a
graphical device. Other functions can be written by the user and supplied as argument.

maxiter The maximum number of iterations to run before the GA search is halted.

run The number of consecutive generations without any improvement in the best fitness value
before the GA is stopped.

maxfitness The upper bound on the fitness function after that the GA search is interrupted.
names A vector of character strings providing the names of decision variables.
suggestions A matrix of solutions string to be included in the initial population.

seed An integer vector containing the random number generator state. This argument can
be used to replicate the results of a GA search.

A call to the ga function should at least contain the arguments type and fitness. Further-
more, for binary search the argument nBits is required, whereas min and max are needed for
real-valued or permutation encoding.

Default settings for genetic operators are given by the R function gaControl, which is de-
scribed in detail in Section 3.1. Users can choose different operators among those already
available and discussed in Section 3.1, or define their own genetic operators as illustrated
with an example in Section 4.9.

The function ga returns an S4 object of class "ga". This object contains slots that report
most of the arguments provided in the function call, as well as the following slots:

iter A numerical value for the current iteration of the search.
population A matrix of dimension object@popSize times the number of decision variables.

fitness The evaluated fitness function for the current population of individuals.
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best The “best” fitness value at each iteration of the GA search.
mean The average fitness value at each iteration of the GA search.

fitnessValue The “best” fitness value found by the GA search. At convergence of the algo-
rithm this is the fitness evaluated at the solution string(s).

solution A matrix of solution strings, with as many rows as the number of solutions found,
and as many columns as the number of decision variables.

The GA package is byte-compiled, as are all of standard (base and recommended) R packages.
For a simple vectorized fitness function, byte-compiling may marginally improve the compu-
tational time required. However, if the fitness function is not vectorized and it must perform
complex calculations, byte-compiling should significantly reduce the computational time.

3.1. Functions and genetic operators

Several R functions for generating the initial population and for applying genetic opera-
tors are contained in the GA package. The naming of these functions follow the scheme
ga<type>_<operator> where

<type> can be one of bin, real or perm, according to the type of GA problem, and

<operator> identifies the genetic operator to be employed.

Note that this naming scheme is just a convention we thought was useful to adopt, but, in
principle, any name could be used.

Hereafter, we briefly introduce the available operators for each GA type. Interested readers
may find detailed descriptions of such operators in, for instance, Back et al. (2000a,b), Yu
and Gen (2010) and Eiben and Smith (2003).

Population
For generating the initial population, the available R functions are:
gabin_Population Generate a random population of object@nBits binary values.

gareal_Population Generate a random (uniform) population of real values in the range
[object@min, object@max].

gaperm_Population Generate a random (uniform) population of integer values in the range
[object@min, object@max].

All these functions take as input an object of class "ga" and return a matrix of dimension
object@popSize times the number of decision variables.

Selection

The following R functions are available for the selection genetic operator:

gabin_lrSelection, gareal_lrSelection, gaperm_lrSelection Linear-rank selection.
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gabin_nlrSelection, gareal_nlrSelection, gaperm_nlrSelection Nonlinear-rank selec-
tion.

gabin_rwSelection, gareal_rwSelection, gaperm_rwSelection Proportional (roulette
wheel) selection.

gabin_tourSelection, gareal_tourSelection, gaperm_tourSelection (Unbiased) tourna-
ment selection.

gareal_lsSelection Fitness proportional selection with fitness linear scaling.

gareal_sigmaSelection Fitness proportional selection with Goldberg’s sigma truncation
scaling.

The above functions take as arguments an object of class "ga" and, possibly, other parameters
controlling the genetic operator. They all returns a list with two elements:

population A matrix of dimension object@popSize times the number of decision variables
containing the selected individuals or strings.

fitness A vector of length object@popSize containing the fitness values for the selected

individuals.

Crossover

Available R functions for the crossover genetic operator are:
gabin_spCrossover, gareal_spCrossover Single-point crossover.
gabin_uCrossover, gareal_uCrossover Uniform crossover.
gareal_waCrossover Whole arithmetic crossover.
gareal_laCrossover Local arithmetic crossover.
gareal_blxCrossover Blend crossover.

gaperm_cxCrossover Cycle crossover.

gaperm_pmxCrossover Partially matched crossover.
gaperm_oxCrossover Order crossover.

gaperm_pbxCrossover Position-based crossover.

These functions take as arguments an object of class "ga" and a two-rows matrix of values
indexing the parents from the current population. They all return a list with two elements:

children A matrix of dimension 2 times the number of decision variables containing the
generated offsprings.

fitness A vector of length 2 containing the fitness values for the offsprings. A value NA is
returned if an offspring is different (which is usually the case) from the two parents.
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Mutation

Available R functions for the mutation genetic operator are:

gabin_raMutation, gareal_raMutation Uniform random mutation.
gareal _nraMutation Nonuniform random mutation.
gareal_rsMutation Random mutation around the solution.
gaperm_simMutation Simple inversion mutation.
gaperm_ismMutation Insertion mutation.

gaperm_swMutation Exchange mutation or swap mutation.
gaperm_dmMutation Displacement mutation.

gaperm_scrMutation Scramble mutation.

These functions take as arguments an object of class "ga" and a vector of values for the
parent from the current population where mutation should occur. They all return a vector
of values containing the mutated string.

Default settings

The function ga uses a set of default settings for genetic operators. These can be retrieved or
set with the function gaControl. Its usage depends on the arguments provided. A call with
no arguments returns a list containing the current values, which by defaults are:

R> gaControl()

$binary
$binary$population

[1] "gabin_Population"
$binary$selection

[1] "gabin_lrSelection"
$binary$crossover

[1] "gabin_spCrossover"
$binary$mutation

[1] "gabin_raMutation"

$ real-valued”

$ real-valued $population
[1] "gareal_Population"

$ real-valued $selection
[1] "gareal_lsSelection"
$ real-valued” $crossover
[1] "gareal_laCrossover"
$ real-valued $mutation
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[1] "gareal_raMutation"

$permutation
$permutation$population
[1] "gaperm_Population"
$permutation$selection
[1] "gaperm_lrSelection"
$permutation$crossover
[1] "gaperm_oxCrossover"
$permutation$mutation
[1] "gaperm_simMutation"

$eps
[1] 1.490116e-08

A call to gaControl with a single string specifying the name of the component returns the
current value(s):

R> gaControl("binary")

$population
[1] "gabin_Population"

$selection
[1] "gabin_lrSelection"

$crossover
[1] "gabin_spCrossover"

$mutation
[1] "gabin_raMutation"

In this case the function returns the current genetic operators used by the "binary" GAs
search.

To change the default values, a named component must be followed by a single value (in case
of "eps") or a list of component(s) specifying the name of the function for a genetic operator.
For instance, the following code saves the current default values, and then set the tournament
selection as the new default for binary GAs:

R> defaultControl <- gaControl()
R> gaControl("binary" = list(selection = "gabin_tourSelection"))

When any value is set by gaControl, this will remain in effect for the rest of the session. To
restore the previously saved package defaults:

R> gaControl (defaultControl)
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4. Examples

Many examples concerning optimization tasks are provided in this Section. In particular,
we will present the optimization of well-known benchmark mathematical functions, but also
applications of genetic algorithms in a variety of statistical problems.

Hereafter, we assume that the GA package is already installed and loaded in the current R
session, for example by entering the following command:

R> library("GA")

4.1. Function optimization on one dimension

We start by a simple one-dimensional function minimization by considering the function
f(z) = |z| + cos(x), which has min f(0) = 1 for —oco < 2 < +00o (see test function F1 in
Haupt and Haupt 2004). Here we restrict our attention to z € [—20,20], so this function can
be defined and plotted in R as follows:

R> f <- function(x) abs(x) + cos(x)
R> min <- -20

R> max <- +20

R> curve(f, min, max)

We can define the fitness function, which in this case is simply minus the function to minimize,
and run the genetic algorithm with the code:

R> fitness <- function(x) -f(x)
R> GA <- ga(type = "real-valued", fitness = fitness, min = min, max = max)

Here we specified type = "real-valued" for a real-valued function optimization using the R
function fitness as the objective function to be maximized over the range provided by the
arguments min and max. By default the ga function monitors the search by printing the mean
and the best fitness values at each iteration:

Iter = 1 | Mean = -10.30292 | Best = -1.106484
Iter = 2 | Mean = -5.740801 | Best = -1.106484
[...]

Iter = 100 | Mean = -2.103191 | Best = -1.000008

At the end of the search an S4 object of class "ga" is returned, which can be printed and
plotted as follows:

R> GA

An object of class "ga"

Call:
ga(type = "real-valued", fitness = fitness, min = min, max = max)

11
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Available slots:

[1] "call" "type" "min" "max"

[6] "nBits" "names" "popSize" "iter"

[9] "run" "maxiter" "suggestions" '"population"
[13] "elitism" "pcrossover"  "pmutation" "fitness"
[17] "best" "mean" "fitnessValue" "solution"

R> plot(GA)
R> summary (GA)

GA settings:

Type = real-valued
Population size = 50

100

Number of generations
Elitism =
Crossover probability

I
O O N
= 00

Mutation probability
Search domain
x1
Min -20
Max 20

GA results:
Iterations = 100
Fitness function value = -1.000008
Solution =

x1
[1,] -7.697129e-06

The plot method produces the graph in Figure 2b, where the best and average fitness values
along the iterations are shown.

Figure 2a contains an animation of the GA search, which shows the evolution of the population
units and the corresponding functions values at each generation. This has been obtained by
defining a new monitor function and then passing this function as an optional argument to

ga:

R> monitor <- function(obj) {

+ curve(f, min, max, main = paste("iteration =", obj@iter), font.main = 1)
points(obj@population, -obj@fitness, pch = 20, col = 2)

rug (obj@population, col = 2)

Sys.sleep(0.2)

+ + + +
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Figure 2: One-dimensional test function: f(x) = |z|4 cos(x). Panel (a) shows the function; if
you are viewing this in Acrobat, click on the image to see an animation of fitness evaluation
at each iteration. Panel (b) shows best and average fitness valuew at each GA generation
step.

R> GA <- ga(type = "real-valued", fitness, min = min, max = max,
+ monitor = monitor)

Consider now the function f(z) = (22 + z) cos(z) defined over the range —10 < z < 10 (see
test function F6 in Haupt and Haupt 2004). This function can be defined and plotted in R
as follows:

R> f <- function(x) (x°2 + x) * cos(x)
R> min <- -10

R> max <- 10

R> curve(f, min, max)

For the maximization of this function we may use f directly as the fitness function:

R> GA <- ga(type = "real-valued", fitness = f, min = min, max = max)
R> plot(GA)
R> summary (GA)

GA settings:
Type

Population size = 50
Number of generations 100

real-valued
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Figure 3: One-dimensional test function: f(z) = (2? + x)cos(x). Panel (a) shows best and
average fitness values at each GA generation step. Panel (b) shows the solutions found by
GA and two other numerical optimization algorithms available in R.

Elitism =
Crossover probability
Mutation probability
Search domain

x1
Min -10
Max 10

I
O O N
= 00

GA results:

Iterations

Fitness function value

Solution =
x1

[1,] 6.560539

100
47.70562

Figure 3a shows the evolution of GA search, which quickly identifies the global maximum of
the function (see Figure 3b).

The final GA result can be compared with the solutions provided by two other optmization
algorithms available in R: optimize, which uses a combination of golden section search and
successive parabolic interpolation, and nlm, which uses a Newton-type algorithm. The results
shown in Figure 3b makes clear that the latter two optimization algorithms are both trapped
in local maxima, while the GA is able to identify the right global maximum. The code used
to obtain this graph is the following:

R> opt.sol <- optimize(f, lower = min, upper = max, maximum = TRUE)
R> nlm.sol <- nlm(function(...) -f(...), 0, typsize = 0.1)
R> curve(f, min, max)
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Figure 4: Panel (a) shows a perspective plot of the Rastrigin test function, while panel (b)
shows the corresponding contours. If you are viewing this in Acrobat, click on the panel (b)
image to see an animation of fitness evaluation at each GA iteration.

R> points(GA@solution, GA@fitnessValue, col = 2, pch = 20)

R> points(opt.sol$maximum, opt.sol$objective, col = 3, pch = 8)
R> points(nlm.sol$estimate, -nlm.sol$minimum, col = 4, pch = 17)
R> legend(x = -5, y = -70, legend = c("ga", "optimize", "nlm"),
+ title = "Solutions", pch = c¢(20,8,17), col = 2:4)

4.2. Function optimization on two dimensions

The Rastrigin function is a non-convex function often used as a test problem for optimization
algorithms because it is a difficult problem due to its large number of local minima. In two
dimensions it is defined as

f(21,29) = 20 4+ 23 4 235 — 10(cos(27mx1) + cos(272)),

with x; € [-5.12,5.12] for ¢ = 1,2. It has a global minimum at (0,0) where f(0,0) = 0.
Figure 4 shows a perspective plot! and a contour plot of the Rastrigin function obtained as
follows:

R> x1 <- x2 <- seq(-5.12, 5.12, by = 0.1)

R> f <- outer(x1l, x2, Rastrigin)

R> persp3D(x1, x2, f, theta = 50, phi = 20)

R> filled.contour(x1, x2, f, color.palette = jet.colors)

The optimization of this function with the monitoring of the space searched at each GA
iteration (see Figure 4b) can be obtained through the following code:

'The function persp3D, included in the GA package, is an enhanced version of the base persp function.
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R> monitor <- function(obj) {
contour(x1, x2, f, drawlabels = FALSE, col = gray(0.5))
title(paste("iteration =", obj@iter), font.main = 1)
points(obj@population, pch = 20, col = 2)
Sys.sleep(0.2)

}

R> GA <- ga(type = "real-valued",

+ fitness = function(x) -Rastrigin(x[1], x[2]),

+ min = c(-5.12, -5.12), max = c(5.12, 5.12), popSize = 50,

+ maxiter = 100, monitor = momitor)

R> summary (GA)

+ + + + +

GA settings:

Type = real-valued
Population size = 50

Number of generations = 100

Elitism = 2

Crossover probability = 0.8
Mutation probability = 0.1

Search domain
x1 x2

Min -5.12 -5.12

Max 5.12 5.12

GA results:

Iterations = 100

Fitness function value = -3.462895e-06
Solution =

x1 X2
[1,] -0.0001164603 6.238426e-05

Looking at the final result, we may conclude that GA did a pretty good job in recovering the
area where the minimum of the Rastrigin function lies. To refine the search, the final solution
of GA can be input to a derivative-based optimization algorithm, for instance:

R> NLM <- nlm(function(x) Rastrigin(x[1], x[2]), GA@solution)
R> NLM[c("minimum", "estimate")]

$minimum

(1] ©

$estimate

[1] 2.518049e-14 4.492133e-14
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4.3. A robust estimator: Andrews Sine function

Chatterjee, Laudato, and Lynch (1996) discussed an application of GAs to obtain robust
estimates of coefficients of a linear model. For the usual model y; = BTx; + ¢, where & =
(1,z1,...,xp) is a vector of predictors independent from the error component having E(e) = 0,
the coefficients § are obtained by minimizing

= yi — Bl x;
> ()

where s is a scaling factor which can be set at 1. Using p(z) = z*, we revert to the usual OLS
estimator. A robust estimator can be obtained by using the Andrews Sine function (Andrews
1974) defined as follows:

2

a?(1 — cos(z/a)) if || < ma
plx) =19 5 . :
2a if |z| > ma

where a = 1.5 in the original proposal by Andrews.

The Andrews Sine function and the fitness function to be used in the GA (recall that we need
to maximize the fitness) are defined as:

R> AndrewsSineFunction <- function(x, a = 1.5)

+ ifelse(abs(x) > pi * a, 2 * a”2, a2 * (1 - cos(x/a)))
R> rob <- function(b, s = 1)

+ -sum (AndrewsSineFunction((y - X 7*J, b)/s))

We apply the robust fitting procedure to the well-known stackloss dataset available in the
datasets package.

R> data("stackloss", package = "datasets")

The range of the search space can be obtained from a preliminary OLS estimation of the
coefficients and their standard errors:

R> OLS <- 1m(stack.loss ~ ., data = stackloss)
R> y <- model.response (model.frame (0OLS))

R> X <- model.matrix(OLS)

R> se.coef <- sqrt(diag(vcov(OLS)))

R> min <- coef(OLS) - 3 * se.coef

R> max <- coef(OLS) + 3 * se.coef

We can now run the GA search, this time by using a large number of possible iterations and
increasing the probability of mutation to ensure that vast portion of the parameter space is
explored.

R> GA <- ga(type = "real-valued", fitness = rob, min = min, max = max,
+ popSize = 100, pmutation = 0.2, maxiter = 5000, run = 200)
R> summary (GA)
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GA settings:

Type = real-valued
Population size = 100

Number of generations = 5000
Elitism = b5

Crossover probability = 0.8
Mutation probability = 0.2

Search domain

(Intercept) Air.Flow Water.Temp Acid.Conc.
Min -75.607665 0.3110656 0.1912133 -0.6210046
Max  -4.231684 1.1202148 2.3993589 0.3167596

GA results:
Iterations = 3738
Fitness function value = -26.96648

Solution =
(Intercept) Air.Flow Water.Temp Acid.Conc.
[1,] -37.17334 0.81665 0.5240304 -0.07210479

The final robust coefficients estimated are equal, up to the second significant digit, to those
provided by Chatterjee et al. (1996).

4.4. Curve fitting

Jones, Maillardet, and Robinson (2009, p. 219-220) presented a curve fitting application using
data on the growth of trees. The relationship bewteen the volume of the trunk (in m?) of a
spruce tree as function of age (years since the trunk reached a height of 1.3 m) is modeled
using a popular ecological model known as Richards curve:

b C
f(x)za(l—ei I) .
This is a nonlinear regression model with parameters 8 = (a, b, c)T. Using a quadratic loss
function (i.e., nonlinear least squares), the Richards curve can be fitted using genetic algo-
rithms as follows:

R> data("trees", package = "spuRs")

R> tree <- trees[trees$ID == "1.3.11", 2:3]

R> richards <- function(x, theta)

+ theta[1] * (1 - exp(-theta[2] * x)) “thetal3]

R> fitnessL2 <- function(theta, x, y) -sum((y - richards(x, theta))"2)

R> GA2 <- ga(type = "real-valued", fitness = fitnessL2,

+ x = tree$Age, y = tree$Vol, min = c(3000, 0, 2), max = c(4000, 1, 4),
+ popSize = 500, crossover = gareal_blxCrossover, maxiter = 5000,
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+ run = 200, names = c("a", "b", "c"))
R> summary (GA2)

GA settings:

Type = real-valued
Population size = 500
Number of generations = 5000
Elitism = 25
Crossover probability = 0.8
Mutation probability = 0.1
Search domain

abec
Min 3000 0 2
Max 4000 1 4
GA results:
Iterations = B85
Fitness function value = -2773.837
Solution =

a b c

[1,] 3592.376 0.01544009 2.783055

Note that here the fitness function fitnessL2 needs to be maximized with respect to the
parameters in theta, given the observed data in x and y. The latter are supplied as a further
argument in the call to the function ga and are kept fixed during the search.

Furthermore, we increased population size to 500, and we decided to stop the algorithm after
at most 5000 iterations or 200 generations without improving the fitness. Finally, we adopted
a blend crossover for improving the search over the parameter space.

If a different loss function is required, for instance a L1-norm, we simply need to change the
fitness function as follows:

R> fitnessLl <- function(theta, x, y) -sum(abs(y - richards(x, theta)))
R> GA1 <- ga(type = "real-valued", fitness = fitnessL1,

+ x = tree$Age, y = tree$Vol, min = c(3000, 0, 2), max = c(4000, 1, 4),
+ popSize = 500, crossover = gareal_blxCrossover, maxiter = 5000,

+ run = 200, names = c("a", "b", "c"))

R> summary(GA1)

19
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GA settings:

Type = real-valued
Population size = 500
Number of generations = 5000
Elitism = 25
Crossover probability = 0.8
Mutation probability = 0.1
Search domain

abc
Min 3000 O 2
Max 4000 1 4
GA results:
Iterations = 937
Fitness function value = -134.017
Solution =

a b c

[1,] 3534.741 0.01575454 2.800797

4.5. Subset selection

A typical application of binary GAs in statistical modeling is subset selection (see e.g., the
R package glmulti, Calcagno and de Mazancourt 2010). Given a set of p predictors, sub-
set selection aims at identifying those predictors which are most relevant for explaining the
variation of a response variable. This allows one to achieve parsimony of unknown parame-
ters, yielding both better estimation and clearer interpretation of regression coefficients. The
problem of subset selection can be naturally treated by GAs using a binary string, with 1
indicating the presence of a predictor and 0 its absence from a given candidate subset. The
fitness of a candidate subset can be measured by one of the several model selection criteria,
such as AIC, BIC, etc.

Bozdogan (2004) discussed the use of GAs for subset selection in linear regression models,
and in the following we present an application closely following his analysis, but with the use
of Akaike’s information criterion (AIC; Akaike 1973). We start by loading the dataset from
the UsingR package (Verzani 2005) and then we fit a linear regression model by OLS:

R> data("fat", package = "UsingR")

R> mod <- 1lm(body.fat.siri ~ age + weight + height + neck + chest + abdomen +
+ hip + thigh + knee + ankle + bicep + forearm + wrist, data = fat)

R> summary (mod)

[...]
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -18.18849 17.34857 -1.048 0.29551
age 0.06208 0.03235 1.919 0.05618 .
weight -0.08844 0.05353 -1.652 0.09978 .
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height -0.06959 0.09601 -0.725 0.46925
neck -0.47060 0.23247 -2.024 0.04405 *
chest -0.02386 0.09915 -0.241 0.81000
abdomen 0.95477 0.08645 11.044 < 2e-16 *xx*
hip -0.20754 0.14591 -1.422 0.15622
thigh 0.23610 0.14436 1.636 0.10326
knee 0.01528 0.24198 0.063 0.94970
ankle 0.17400 0.22147 0.786 0.43285
bicep 0.18160 0.17113 1.061 0.28966
forearm 0.45202 0.19913 2.270 0.02410 *
wrist -1.62064 0.53495 -3.030 0.00272 **
Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.305 on 238 degrees of freedom
Multiple R-squared: 0.749, Adjusted R-squared: 0.7353
F-statistic: 54.65 on 13 and 238 DF, p-value: < 2.2e-16

The design matrix (without the intercept) and the response variable are extracted from the
fitted model object using:

R> x <- model.matrix(mod) [, -1]
R> y <- model.response (model.frame (mod))

Then, the fitness function to be maximized can be defined as follows:

R> fitness <- function(string) {
inc <- which(string == 1)
X <- cbind(1, x[,inc])
mod <- Im.fit(X, y)
class(mod) <- "lm"
-AIC(mod)

}

+ + + + + +

which simply estimates the regression model using the predictors identified by a 1 in the
corresponding position of string, and returns the negative of the chosen criterion. Note that
an intercept term is always included, and that we employ the basic 1m.fit function to speed
up calculations. The following R code runs the GA:

R> GA <- ga("binary", fitness = fitness, nBits = ncol(x),
+ names = colnames(x), monitor = plot)

R> plot(GA)

R> summary (GA)
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Figure 5: Plot of best and average fitness values at each step of the GA search. If you are
viewing this in Acrobat, click on the image to see an animation of fitness evaluation during
the GA iterations.

GA settings:

Type = binary

Population size = 50

Number of generations = 100

Elitism = 2

Crossover probability = 0.8

Mutation probability = 0.1

GA results:

Iterations = 100

Fitness function value = -1458.996

Solution =
age weight height neck chest abdomen hip thigh knee ankle bicep

[1,] 1 1 0 1 0 1 1 1 0 0 0
forearm wrist

[1,] 1 1

A graphical summary of the GA search is shown in Figure 5.

The linear regression model fit obtained using the best subset found by GA is the following:

R> mod2 <- 1m(body.fat.siri ~ .,
+ data = data.frame(body.fat.siri = y, x[,GA@solution == 1]))
R> summary (mod2)

[...]
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Coefficients:
Estimate Std. Error t value Pr(>|tl)
(Intercept) -22.65637 11.71385 -1.934 0.05426 .

age 0.06578 0.03078 2.137 0.03356 *

weight -0.08985 0.03991 -2.252 0.025624 *

neck -0.46656 0.22462 -2.077 0.03884 *

abdomen 0.94482 0.07193 13.134 < 2e-16 **x*

hip -0.19543 0.13847 -1.411 0.15940

thigh 0.30239 0.12904 2.343 0.01992 =*

forearm 0.51572 0.18631 2.768 0.00607 *x

wrist -1.53665 0.50939 -3.017 0.00283 *x*

Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.282 on 243 degrees of freedom
Multiple R-squared: 0.7466, Adjusted R-squared: 0.7382
F-statistic: 89.47 on 8 and 243 DF, p-value: < 2.2e-16

Compared to Bozdogan (2004) solution, which used the ICOMP (IFIM) criterion for evaluating
the subsets, the GA solution with fitness based on AIC selects one more predictor, namely
weight. Because of its strong collinearity with hip (r = 0.94), the latter predictor is not
statistically significant (p value = 0.1594). This result is not surprising, since it is known that
AIC tends to overestimate the number of predictors required, while ICOMP(IFIM) is able to
protect against multicollinearity.

4.6. Acceptance sampling

Acceptance sampling is an area of applied statistics where sampling is used to determine
whether to accept or reject a production lot of material (raw materials, semifinished products,
or finished products). An introduction to acceptance sampling is contained in the textbook by
Montgomery (2009), while a monograph devoted to the argument is Schilling and Neubauer
(2009).

In acceptance sampling for attributes, only the presence or absence of a characteristic in the
inspected item is recorded. Among the available sampling plans, the single-sampling plan
involves taking a random sample of size n from a lot of size N. The number d of defective
items found is compared to an acceptance number ¢, and the lot is accepted if d < ¢. The
probability of acceptance P, can be computed by assuming a Binomial distribution for the
number of defectives in a lot (the so-called type B sampling). Thus, such a probability is
given by

(&
n _
=3 (4o
d=0
A plot of P, vs p is called operating characteristic (OC) curve, and expresses the probability
of acceptance as a function of lot quality.

In practical applications, a single-sampling plan needs the specification of the sample size n
and the acceptance number ¢. This is usually pursued by specifying two points on the OC
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curve and solving the resulting system of equations:

l—a = zc: <Z>pcf(1 —p1)"?

d=0

s = ; <Z>p§l(1 —p2)" !

where p; is typically set at the average quality limit (AQL), and py at the lot tolerance
percent defective (LTPD). The system of equations in (2) is nonlinear and no direct solution
is available. Traditionally, a graph called nomogram is consulted for obtaining the pair (n, c)
that solves (2), at least approximately due to discreteness of parameters. Below we present a
simple solution to this problem using GAs.

, (2)

We may define and plot the two selected points on the OC curve as follows:

R> AQL <- 0.01

R> alpha <- 0.05

R> LTPD <- 0.06

R> beta <- 0.10

R> plot(0, 0, type = "n", xlim = c(0, 0.2), ylim = c(0, 1), bty = "1",

+ xaxs = "i", yaxs = "i", ylab = expression(P[a]), xlab = expression(p))
R> lines(c(0,AQL), rep(1 - alpha, 2), 1ty = 2, col = "gray")

R> lines(rep(AQL,2), c(1 - alpha, 0), 1ty = 2, col = "gray")

R> lines(c(0,LTPD), rep(beta,2), 1ty = 2, col = "gray")

R> lines(rep(LTPD, 2), c(beta,0), 1ty = 2, col = "gray")

R> points(c(AQL, LTPD), c(1 - alpha, beta), pch = 16)

R> text(AQL, 1 - alpha,

+ labels = expression(paste("(", AQL, ", ", 1 - alpha, ")")), pos = 4)
R> text(LTPD, beta,

+ labels = expression(paste("(", LTPD, ", ", beta, ")")), pos = 4)

with the resulting graph shown in Figure 6a.

Given that both n and ¢ should be positive integer values, we may use binary GAs with Gray
encoding. This eliminates the well-known Hamming cliff problem associated with binary
coding. As an example, consider a five-bit encoding using the standard binary coding. Two
consecutive integers, for instance 15 and 16, are encoded as:

R> decimal2binary (15, 5)
[11 01111
R> decimal2binary (16, 5)
(1] 10000

then moving from 15 to 16 (or vice versa) all five bits need to be changed. On the other hand,
using Gray encoding:
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Figure 6: OC curve for single acceptance sampling plan. Panel (a) shows the two fixed points
for which a solution is sought. Panel (b) shows the OC curve for the solution (n = 87,¢c = 2)
found by GAs.

R> binary2gray(decimal2binary (15, 5))
(1] 01000
R> binary2gray(decimal2binary (16, 5))
[11 11000

the two binary strings differ by one bit only. Thus, in Gray encoding the number of bit
differences between any two consecutive strings is one, whereas in binary strings this is not
always true. The R functions binary2decimal and gray2binary are also available to move
from one type of encoding to another.

Returning to our problem, a decoding function which takes as input a solution string of binary
values in Gray representation, and then transform it to a decimal representation for the pair
(n,c) can be defined in R as:

R> decode <- function(string) {

+ string <- gray2binary(string)

n <- binary2decimal(string[1:11])

¢ <- min(n, binary2decimal(string[(11 + 1):(11 + 12)]))
return(c(n, c))

}

+ + + +

where 11 and 12 are the number of bits required to separately encode the two parameters.

The fundamental step for solving (2) via GAs is to define a loss (quadratic) function to
evaluate a proposal solution pair:

25
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R> fitness <- function(string) {

par <- decode(string)
n <- par[1]
¢ <- par[2]

Pal <- pbinom(c, n, AQL)

Pa2 <- pbinom(c, n, LTPD)

Loss <- (Pal - (1 - alpha))~2 + (Pa2 - beta) "2
-Loss

}

+ + + + + + + +

Then, a GA search is run over the user-defined search space [2,200] x [0, 20]:

R> n <- 2:200

R> c <- 0:20

R> bl <- decimal2binary(max(n))

R> 11 <- length(bl)

R> b2 <- decimalZbinary(max(c))

R> 12 <- length(b2)

R> GA <- ga(type = "binary", nBits = 11+12, fitness = fitness,
+ popSize = 200, maxiter = 200, run = 100)

R> summary (GA)

GA settings:

Type = Dbinary
Population size = 200
Number of generations 200
Elitism = 10

Crossover probability = 0.8

Mutation probability = 0.1

GA results:

Iterations = 121

Fitness function value = -5.049435e-05
Solution =

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13
[1,J o1 1 1 1 1 0 O 1 0 0 1 1

R> decode (GA@solution)
[1] 87 2

The final solution provided is thus decoded to obtain the solution pair (n = 87,¢ = 2). The
corresponding OC curve is shown in Figure 6b. This is obtained from Figure 6a by adding
the solution OC curve as follows:
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R> n <- 87

R> c <- 2

R> p <- seq(0, 0.2, by = 0.001)
R> Pa <- pbinom(2, 87, p)

R> lines(p, Pa, col = 2)

An advantage of using GAs for solving the problem of identifying the parameters of an accep-
tance sampling plan is that this approach can be easily extended to more complicated plans,
for instance double sampling plan, by suitably modifying the functions fitness and decode.

4.7. Constrained optimization

The knapsack problem considers the maximization of the weighted profit subject to the con-
straint of the knapsack’s capacity. Formally, given a set of weights w;, profits p;, and knap-
sack’s capacity W, find a binary vector = (x1,...,xy) such that Y " | z;p; is maximized
under the constraint that > | z;w; < W. The solution to this problem is a binary string of
length n where x; = 1 if the i-th item is selected for the knapsack, and z; = 0 otherwise.

Consider the following data (Yu and Gen 2010, p. 271) with profit (p), weight (w), and capacity
(W):

R>p <-c(6, 5, 8, 9, 6, 7, 3)
R> w<-c(2, 3, 6, 7, 5, 9, 4)
R> W <-9

A binary GA can be used to solve the knapsack problem, but not all the possible solutions
are feasible due to the inequality constraint. We may take the constraint into account by
penalizing unfeasible solutions. Thus, the fitness function can be defined as follows:

R> knapsack <- function(x) {

+ f <- sum(x * p)

+ penalty <- sum(w) * abs(sum(x * w)-W)
+ f - penalty

+ }

where the objective function f is penalized with penalty, a quantity that depends on the
distance between the capacity of the proposed solution to the knapsack’s capacity. Then:

R> GA <- ga(type = "binary", fitness = knapsack, nBits = length(w),
+ maxiter = 1000, run = 200, popSize = 20)
R> summary (GA)

GA settings:
Type = Dbinary
Population size = 20
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Number of generations = 1000
Elitism =1
Crossover probability = 0.8
Mutation probability = 0.1
GA results:

Iterations = 202
Fitness function value = 15

Solution =
x1 x2 x3 x4 x5 x6 X7
[1,] 1 0 0 1 O O O

R> sum(p * GA@solution)
[1] 15
R> sum(w * GA@solution)
(1] 9

The inclusion of an effective and efficient penalty term in the fitness function can be diffi-
cult, and often requires some tuning depending on the specific problem. Furthermore, this
approach is suitable in the presence of inequality constraints. In the case of equality con-
straints, different approaches should be adopted. A procedure for the inclusion of equality
constraints is provided by repair algorithms, which simply repair an infeasible solution before
fitness evaluation. Although this is a straightforward procedure, it is unlikely to be computa-
tionally very efficient. A better procedure may be found if the constrained optimization could
be re-expressed as an unconstrained problem.

Consider the allele frequency estimation problem in Lange (2004, p. 123-125). For the three
alleles A, B, and O, there are four observable phenotypes A, B, AB, and O. This is because each
individual inherits two alleles from the parents, and alleles A and B are genetically dominant to
allele O. Lange (2004) considered a sample of n = 521 duodenal ulcer patients whose frequency
distribution of the observed phenotype is: n4 = 186, np = 38, nap = 13, np = 284. Assuming
a multinomial distribution in conjunction with the Hardy-Weinberg law of population genetics,
Lange (2004) maximized the log-likehood using a MM algorithm. The solution found is
p = (pa,pB,po) = (0.2136,0.0501,0.7363) with corresponding log-likelihood (except for a
constant term involving the multinomial coefficient) equal to —511.5715.

We start by applying a constrained GA with repairing:

R> n.A <- 186
R> n.B <- 38
R> n.AB <- 13
R> n.0 <- 284

R> loglik <- function(p) {
+ n.A * log(p[1]~2 + 2 * p[1] * p[3]) +
+ n.B * log(p[2]°2 + 2 * p[2] * p[3]) +
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+ n.AB * log(2 * p[1] * p[2]) +

+ n.0 * log(pl[3]1°2)

+ }

R> fitness <- function(p) {

+  p <= p/sum(p)

+ loglik(p)

+ }

R> GA <- ga(type = "real-valued", fitness = fitness,
+ min = c(0, 0, 0), max = c(1, 1, 1), popSize = 50, maxiter = 1000,
+ run = 100, names = c("A", "B", "0"))

R> p <- GA@solution/sum(GA@solution)

R> print(p)

A B 0
[1,] 0.2134997 0.05004689 0.7364534

R> loglik(p)
[1] -511.5716
R> GAQiter

[1] 425

This approach yields a solution very close to that provided by Lange (2004). An unconstrained
optimization can be pursued via parameter transformation using the inverse multinomial logit
transformation:

R> invmlogit <- function(theta) {
p <- rep(0, length(theta) + 1)
pl1] <= 1/(1 + sum(exp(theta)))
pl[-1] <- exp(theta) * p[1]
return(p)
}
R> fitness <- function(theta) {
+ p <- invmlogit (theta)
+ loglik(p)
+ }
R> GA <- ga(type = "real-valued", fitness = fitness, min = rep(-3, 2),
+ max = rep(3, 2), popSize = 50, maxiter = 1000, run = 100)
R> p <- invmlogit (GA@solution)
R> names(p) <- c("A", "B", "0")
R> print(p)

+ + + + +

A B 0
0.21350767 0.05015133 0.73634100
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R> loglik(p)
[1] -511.5715
R> GA@iter
[1] 169

The GA search using unconstrained maximization yields an improved solution, and it also
requires much fewer iterations.

4.8. Traveling salesperson problem

The traveling salesperson problem (TSP) is one of the most widely discussed problems in com-
binatorial optimization. In its simplest form, consider a set of n cities with known symmetric
intra-distances, the TSP involves finding an optimal route for visiting all the cities and return
to the starting point such that the distance traveled is minimized. The set of feasible solutions
is given by the total number of possible routes, which is equal to (n — 1)!/2, a value which
quickly can become enormous. Several algorithms for solving the TSP have been proposed
in the literature, and some of them are available in the R package TSP (Hahsler and Hornik
2007).

Several different representations and genetic operators for solving the TSP with GAs are
available (for a review see Larranaga, Kuijpers, Murga, Inza, and Dizdarevic 1999). The
most natural representation is denominated path representation. In this representation, the
n cities are put in order according to a list of n elements, so that if the city ¢ is the j-th
element of the list, city i is the j-th city to be visited. For example, given 5 cities the list
(B,D,A,C,E) corresponds to the tour that visits first city B, then D, etc., ending with
city E.

Consider a simple example using the data on road distances (in km) between 21 cities in
Europe:

R> data("eurodist", package = '"datasets")
R> D <- as.matrix(eurodist)

The fitness function to be maximized can be defined as the reciprocal of the tour length. The
following R code can be used to define the tour length, the fitness function, and run the GA
search:

R> tourLength <- function(tour, distMatrix) {
+  tour <- c(tour, tour[1])

+ route <- embed(tour, 2)[,2:1]

+ sum(distMatrix[route])

+

R> tspFitness <- function(tour, ...) 1/tourLength(tour, ...)

R> GA <- ga(type = "permutation", fitness = tspFitness, distMatrix = D,
+ min = 1, max = attr(eurodist, "Size"), popSize = 50, maxiter = 5000,
+ run = 500, pmutation = 0.2)

R> summary (GA)
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Figure 7: Map of European cities with optimal TSP tour found by GA.

T et S +
| Genetic Algorithm [
e +

GA settings:

Type = permutation
Population size = 50

Number of generations = 5000
Elitism =

Crossover probability = 0.8
Mutation probability = 0.2

GA results:

Iterations = 811

Fitness function value 0.00007786949
Solutions =
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18
[1,] 1721 11916 815 214 9 12 13 18 5 4 3 11 7
[2,] 711 3 4 518 1312 9 14 2 15 8 16 19 1 21 17
x19 x20 x21
[(1,] 20 10 6

[2,] 6 10 20
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The solutions found correspond to a unique path, with tour length equal to:

apply(GA@solution, 1, tourLength, D)
[1] 12842 12842

Figure 7 shows a map of cities, where the coordinates are computed from intra-distances using
multidimensional scaling, and the solution path found by GA. The code to draw the graph is
the following:

R> mds <- cmdscale(eurodist)

R> x <- mds[, 1]

R> y <- -mds[, 2]

R> plot(x, y, type = "n", asp = 1, xlab = "", ylab = "")

R> abline(h = pretty(range(x), 10), v = pretty(range(y), 10),
+ col = "light gray")

R> tour <- GA@solution[1, ]

R> tour <- c(tour, tour[1])

R> n <- length(tour)

R> arrows (x[tour[-nl]], yl[tour[-n]], x[tour[-1]], yl[tour[-1]],
+ length = 0.15, angle = 25, col = "steelblue", lwd = 2)
R> text(x, y, labels(eurodist), cex=0.8)

4.9. User defined genetic operators

Several R functions are included in the GA package for obtaining an initial population and
for applying genetic operators depending on the encoding of decision variables as described
in Section 3.1. However, user defined functions can be also provided as arguments to ga.
Suppose we would like to implement Boltzmann selection, an operator in which the strength
of selection increases over the iterations in a manner similar to the “temperature” variable
in simulated annealing. For two randomly selected individuals with fitness f; > fa2, the
probability of selecting the first individual is computed as

p=exp{=(f1 — f2)/T}

where T is the temperature, a parameter which controls the rate of selection. The temperature
is high at the beginning, which means the selection pressure is low. The temperature is
gradually lowered, hence the selection pressure gradually increases, thereby allowing the GA to
narrow in more closely to the best part of the search space while maintaining a certain degree
of diversity. Following Sivanandam and Deepa (2007, p. 49) we may define T' = Tp(1 — a)*,
where k = 14 100 x iter/maxiter. The parameter o € [0, 1] controls the amount of pressure
applied, with smaller values allowing for increased chance of exploring the search space for
many iterations, and larger values which force the search to concentrate on the part of the
search space where the current solution is located.

An R function implementing the Boltzmann selection is given by the following code:
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R> BoltzmannSelection <- function(object, alpha = 0.2,

+ eps = gaControl (object@type)@eps, ...)

+ o

+ f <- object@fitness

+ TO <- max(f)-min(f)

+ k <= 1 + 100 * object@iter/object@maxiter

+ T <- max(TO * (1 - alpha) "k, eps)

+ sel <- rep(NA, object@popSize)

+ for(i in 1:object@popSize) {

+ s <- sample(1l:object@popSize, size = 2)

+ p <- exp(-abs(f[s[1]]-f[s[2]])/T)

+ if(fls[11] > fls[2]1]) {

+ sel[i] <- if(p > runif(1)) s[2] else s[1]
+ } else {

+ sel[i] <- if(p > runif (1)) s[1] else s[2]
+ }

+ }

+ out <- list(population = object@population[sel, , drop = FALSE],
+ fitness = f[sel])

+ return (out)

+ }

We may now run a GA search for the Rastrigin function discussed in Section 4.2 as follows:

R> GA <- ga(type = "real-valued",

+ fitness = function(x) -Rastrigin(x[1], x[2]),

+ min = c(-5.12, -5.12), max = c(5.12, 5.12),

+ popSize = 50, maxiter = 200, selection = BoltzmannSelection)
R> summary (GA)

GA settings:

Type = real-valued
Population size = 50

Number of generations = 200

Elitism = 2

Crossover probability = 0.8
Mutation probability = 0.1

Search domain
x1 X2

Min -5.12 -5.12

Max 5.12 5.12

GA results:
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Figure 8: GA search paths using Boltzmann selection at different values of o parameter.

Iterations = 200
Fitness function value = -0.0001248783
Solution =
x1 X2
[1,] 7.540733e-05 -0.0007897893

The results shown above are for the default o = 0.2. Other values of o, say 0.8, can be obtained
by appropriately specifying the selection argument in the ga function call as follows:

R> ga(type = "real-valued",

+
+

Figure 8 shows the search path for a = (0,0.1,0.2,0.8).

fitness =
c(-5.12, -5.12), max =

= function(..

min =
selection

function(x) -Rastrigin(x[1],
c(5.12, 5.12), popSize = 50, maxiter = 200,

.) BoltzmannSelection(...

x[2]),
, alpha = 0.8))

When o = 0 there is no selection

pressure and the search is basically a random walk through the search space. As « increases
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the selection pressure also increases with the iterations; furthermore, the pressure is higher
for larger values of . In general, for small and positive values of « the iterations required to
achieve an accurate solution can increase substantially.

5. Conclusion

In this paper we discussed the R package GA for applying genetic algorithm methods in
optimization problems. The package is flexible enough to allow users to define their own
objective function to be optimized, either using built-in standard genetic operators, or by
defining and exploring new operators.

According to the no-free-lunch theorem (Wolpert and Macready 1997), which roughly speak-
ing states that there is no optimization algorithm which is uniformly better than other al-
gorithms on average, genetic algorithms are not the panacea for all types of optimization
searches. In general, GAs are slower than derivative-based algorithm. However, the latter
may be unable to find any optimum at all. On the contrary, GAs can be successful when the
fitness function is not smooth or there are local optima. Furthermore, their use in practical
problems may serve to highlight a set of candidate solutions which, albeit not the optimal
ones, could be at least worthwile to consider.

Finally, we think that the GA package may serve the community in providing a simple,
accurate, and extensible tool for exploring the potentiality of genetic algorithms in statistical
applications.
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